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ABSTRACT

i'

?he published literature on the _ubject of the monitor- Ii

ing of global thunderstorm activity by instrumented satel-

lites has been reviewed. A survey of the properties of

selected physical parameters of the thunderstorm is

presented. The concepts used by satellites to identify

and to measure terrestrial lightning pulses are described.

Included also is a discussion on the experimental data

acquired by satellites. The scientific achievements of the

satellites are evaluated against the needs of scientists

and the potential requirements of user agencies. The

performances of the satellites are rated according to their

scientific and operational achievements. Finally, recommen-

dations for additional studies and experiments are made.
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I - Introduction

By observing the percentage of days per year on which i

thunder was heard in each region of the earth, Brooks (i) i_

developed global maps of seasonal and annual frequency of

thunderstorms. He e_timated, in 192_, the number of global il
{

l06 ,
E

thunderstorms
per annum to be approximately 16 x on .!

average the number of storms occurring in any given time to i
i

be 1800, and the number of lightning strokes occurring per i

second to be approximately !00. From 1925 to the present _II
!

time, many electrical ground-based systems were developed I

and used to determine more precisely the number of global f

[
thunderstorms. They, however, lack the capability of counting l

!

precisely the number of thunderstorms over the oceans. In

the early 1960s, electrical and optical pulses produced by

terrestrial lightning were detected and recorded by instru-

w

ments on orbiting satellites. These early experimental

results indicated that a satellite could be a suitable plat-

form from which global thunderstorm activity could be moni-

tored more precisely.

The satellites, as reported in the open scientific

literature, that detected global terrestrial lightning flashes

are shown in Table 1.

The objectives of this "open" literature review are to

describe the various concepts and techniques that have been

used in the satellites listed in Table l, to evaluate their

experimental data, and to assess, if possible, their respective

1982019048-005
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efficiencies in terms of the users' operational require-

ments and research information as shown in Table 2 (Ref. 2).

To achieve these objectives, it is essential first to

know the nature and characteristics of the energy radiated

from a thunderstorm.

II - Enerqy Radiated from Thunderclouds

1. General

In this section, the discussion will be limited to prop-

erties of the r.f. (3000 Hz to 500 MHz) and the optical-IR

(4000 _ to 10,000 _) electromagnetic energies _adiated from

thunderstor_mm, and only to that portion of it which can or

should be detected by orbiting and stationary satellites.

The radiation is a consequence of a complex physical

process that neutralizes all or a portion of the electro-

static charge residing within the thun_rcl_ud. The neutral-

ization process is complex and it consists of a series of

lightning flashes or strokes that take place between the

thundercloud and the ground, referred to as cloud to ground,

and between various locations within the thunderclouds,

referred to as cloud to cloud flashes. The cloud to cloud

flashes occur more frequently than the cloud to ground

flashes. However, the cloud to ground flashes are much more

energetic than the cloud to cloud.

The lightning flash is a manifestation of the phenomenon

by which some of the electrical energy of the thundercloud is

transformed by dissociation and ionization into thermal,

kinetic, sound, and electromagnetic (r.f. and optical-IR)

i
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TABLE 2

OPERATIONAL AND ENGINEERING APPLICATIOn,!REQUIREMENTS

, SUMMARY TABLE

Real Time

: CLOUO/G_U_O
SPATIAL SPATIAL _[.NT/RAT[ OR

_d[_RA_IC RESOLUTION RESOLUTION

USER AREA 'GOAL MAX GOAL PIAI OR INNER CLOUD FALSE FAIL T0IrRENSITT DIRECTION SPEED 01SCAIMIRATION _ OETECT

Utilities CONUS tZ mt *S m! 10 mtn ZO men Yes Yes Yes NO _ 301

FAA CONUS "3 ira1 S ant ZO $ec I mn lr_YeS S-|0 e _.Z ai/S_ NO 30_ Sl
temtml
area---
S mno_
route

Telecommunications NOne

For_,sting CO.S _" .t I .,S_ .1 1S .,n 50 .,nFTes S-10" m/,.'ZS Yes 302 101

L

| r

Irortst Service C_IUS ZSO m I km S men ZO mln_Ve$ Yes Yes Yes. vlth con- 101 10I

lrtrt _etectlon ttnutng cue-
rqmt monltoe

Foist Service Western __Zml _S mt 1S ,,in 4S lin Desirable ...... 30_ 10S
Storm Tracking :USA

Research Infom4tton

CURgENT RATIO OF RELMIONSMI _'

_AVEFOIt_ SEVERE IN_ER CLOUO BETWEEN
G[OGIIAI_IC OIURNAL EVENT RISE I FALL TI_: STOl_i STROEES/ STO_ ?0 C_OuNO LIGHTNING

USER AREA INFORMATION RATE I PEAK NAGNITU0| SiZE FLASH X0NITORING 01SCNAAGES I RAIN

utilities CONUS Yes Yes Yes Yes Yes No Yes NO

TetK_i¢4ttons COHUS NO Yes Yes Yes Yes /Io Yes NO

FOrtClStlnq C_US Yes Yes No Yes Yes Yes Yes YeS

US Air Force Worlclvlde Yes YeS Yes YeS !Yes NO YeS NO
i

FAA COINS NO No Yes NO Yes No Tes NO

Fomt_ Service CO_ No NO NO NO no no no Yes

Source= NASA Report No. CP-2095, July 1979
Reference= (2)

i

•m..............
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energies. Specifically. it is a narrow charmel of a high

density of excited _nd ionized molecules and atoms that exists

for a short interval of time between the Dase of a thunder-.

cloud and the earth or between the oppositely electrical

charged centers within the cloud. The ionized channel pro-

vides the conduit by which the negative charge at the base of

the cloud is neutralized by the flow to it of the positive

charge from the earth. As a consequence, a current of approxi-

mately 104 amperes flows through this conduit for a very short

time (microseconds), and, as a result, the temperature of the

column is momentarily increased to values ranging from

10,000°K to 30,000°K, producing further dissociation of

molecules and atoms in the channel. The phenomenology of

these transformations is discussed by Uman (3), Schonland (4),

Israel (5), Chalmers (6) _ Kitagawa (7), and in the proceedings

of the five international _'cnferences on atmospheric elec-

tricity (8 - 12).

2. Radio Frequenc Z Radiation (r.f.)

The instantaneous flow and decay of current through the

ionized channel produces the electromagnetic energy that is

radiated in the radio frequency band_ whereas, the association

and de-ionization of air molecules and atoms within the

channel are responsible for the optical-IR electromagnetic

energy. Uman (3), Pierce (13), and Brook (14) present detailed

reviews of these physical processes and, also, analyze and

interpret the spectra of the electromagnetic radiation.

In Fig. l, Pierce (13) shows the variation with frequency

of the amplitude of the electric field as measured at a

1982019048-009
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distance of i0 km from the thunderstorm.
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PEAK, RECEIVED AMPLITUDE AT 10 km FOR SIGNALS RADIATED BY

LIGHTNING

Fig. 1

Sources E. T. Pierce
References (13)

The data on this graph represent the experimental values of

. many scientists who measured the r.f. radiation produced by

various electrical discharge processes in the complete lightning

flash. The references for the data points can be found in the

paper by Oetzel and Pierce (15). [See also Kimpari (16),

-t
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Homer (17), and Homer and Bradly (18).3 The spectrum is

essentially continuous from 3000 Hz to 500 MHz. However,

various discharge processes within the entire period of

lightning flash produce different amounts of radiation at

%-

different frequencies. The peak signal amplitude is attained

at approximately I0 KHz. it decreases by approximately a

factor of 105 from 3000 Hz to 500 >Kqz. From 3000 Hz to 5 MHz

this decrease is linear; whereas, from 5 MHz to the higher

frequencies it decreases more rapidly. Weidman, Krider,

Uman (19) measured the spectral amplitudes of the "step

leaders", of the positive and negative intra cloud discharges,

1 and of the first stroke (return stroke). They report that at

frequencies from 5 x 105 Hz to 5 x 107 Hz the reduction of

signal amplitude could v_ry as f-2 to f-5 (f = frequency).

Since very few measurements were made at these higher fre-

quencies, Brook (14) concluded that beyond 50 H/qz the ampli-

tude vs frequency characteristics are not yet clearly defined.

Malan (20) found that amplitude-frequency relationship

variea substau_tially between a cloud to ground and a cloud to

cloud discharge. He examined the r.f. radiation from more _.
I

than i000 flashes of cloud-ground and cloud-cloud discharges. I

IThe differences in amplitudes at different frequencies for

both of these types of discharges are shown in Fig. 2.

r
I
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Fig. 2
Source, D. J. Malar.

Reference, (20)

Examination of Fig. 2 reveals that at 3 KHz the ampli-

tude ratio of the cloud to cloud radiation appears to be 20 to

i to 40 to i of that of cloud to ground. At higher and higher

frequencies the ratio decreases_ approaching unity at 1.5 MHz.

Kimpari's (16) values for theae variations are shown in

Table 3. These values are an estimate of the relative ampli-

tudes of the respective radiation from ground and cloud flashes

' in the same frequency band.

%
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TABLE 3

Ratios of the Amplitudes of Return Stroke

Radiation of Ground Discharges uo Amplitudes

of the Most Intense Radiation Components o_

Cloud Discharges at Different Frequencies

Frequenc Y Ratio

3 KHz 20/1 to 40/1

6 KHz ±0/i to 20/1

I0 KHz i0/I

20 _{z 5/1

30 KHz 2/1 to 3/1

50 KHz i/I to 1.5/1

1/5 to _2 MHz I/i

It is to be noted that Malan considered only the most

intense radiation preduced by cloud-cloud dlscharges. The

ratio values would be undoubtedly much higher ._ ,eak cloud-

cloud radiation signals had been considered. It is to be

noted also that these mea__urements were made at ground level

and at some kilometers distance from the thunderstorm center.

Furthermore, as Uman (3) points out, the radiation was detected

by tuned circuits, and, therefore, it might be possible that

these same circuits could be _%ergized at the same tim_ by other

spurious radiation.

3. The Radiation in the optical-IR Band

The radiation consists of a continuum upon which is i,_osed

a large number of individual and multiple spectral lines. The

spectral lines are produced by the ionizatior and de-ionization

of nitrogen, oxygen, and hydrogen, and many mor_ minor con-

stituents. A chronological history and ni_l_ography on the

discovery, on the theory, and on the measurement of these

numerous spectral lines are presented by Uman (3).

i
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The optical radiation from return strokes is by far the

most intense. It is easily ide_n_fied. T. R. Connor, as )
i

quoted by Brook (14), provides quantitative data on the ratio i

of the electrical energy deposited into the channel to the

optical energy radiated by the return strokes and measured at

\
various distances fr,)m the strokes. Cot:nor computed the

efficiency of conversion. A summary of these values are given

in Table 4.

TABLE 4

(
!

CALCULATION OF EFFICIENCY. )

•---Visible Energy I
Stroke Range Rain Energy* Deposited Efficiency )
•TyPet (km) Transmission (joules/meter) (joules/meter) (¢) :

IRS I0.0 8.7 x 10-3 2.0 x 103 3.3 x lO5 6.1 x lo"3 i

SRS 7.0 3.6 x lO"2 " 6 x lO2 5.1 x lO4 l.l x 10-2 _

SRS 7.0 3.6 x lO"2 4.2 x 102 4.0 x lO4 l.l x lO"2 I

SRS 7.0 3.6 x lO-2 5.7 x lO2 g.o x lO4 6.4 x lO"3 _

IRS 7.2 3.3 x lO"2 2.3 x lO2 3.2 x lO4 7.3 x lO"3

IRS 4.6 l.l x lO"l 2.2 x lO2 2.1 x lO4 l.l x lO"2

IRS 4.0 1.5 x lO"l 5.9 x lO1 2.2 x !04 2.6 x lO"3
i

Extinction Coefficient Due to Rainfall = 0.475 km"I.

t Weighted Average Efficiency = 0.007 -+36%.

t IRS - First Return Stroke; SRS : Subsequent Return Stroke

" Corrected for (1) humid-air transmission and (2) estimated rainfall
transmission.

Sources M. Brook
References (14)

The values in Table 4 indicate that the conversion of

electrical to optical energy is less by a factor of approxi-

mately l0 -3. Krider et al (21) measured the radiated power in

1982019048-014
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the band 4000 - ii,000 _ for a single lightning flash to be

6.2 x 10 6 watts/m. The computed input optical power was

l.l x l0 I0 watts. Turman (_)_"measured the power of lightning

flashes (4000 - ii,000 _) occurring in Florida. He obtained a

value of 2 x l0 9 watts. He commented further that no peak

Ii
power greater than 2 x i0 watts was observed.

Simultaneous daytime optica measurements of lightning

flashes were made by Brook et al (23) at approximately 20 k/n

above and 20 km distance from a thundercloud. An optically

instrumented U-2 was used to make the measurements above the

clouds. A duplicate optical system was used on the ground, in

this instance, at the Langmuir Laboratory in New Mexico. The

calculated values of 21 pulses measured at the U-2 altitude of

20 km are listed in Table 5.

1982019048-015
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OF POOR QUALITyTABLE 5

Measured optical pulses at U-2

altitude and calculated equivalent
source peak power

Measured Output Calculated Equzvalenc

Pulse # Volca_e. (mV 1 Source Strength _W)

1 28.7 "- 6% 9.3 x 107
2 20.7 ± 8% 6.7 x 107
3 18.0 "- 9% 5.8 x 107

4 17.4 -_ 13% 5.5 x 107
5 44.8 -_6% 1.4 x i0a
6 37.4 ± 6Z 1.2 x 108

7 30.7 _- 10% 1 x 10s

8 38.7 ± 8% 1.3 x l0s
9 26.0 z 6% 8.4 x 10 7
I0 16.7 = 9% 5.5 X 107
Ii 19.3 -" 8% 6.2 x 107
12 14.0 Z llZ 4.5 x i07

13 13.4 = ii% 4.3 x 107

14 60.8 -" 3Z 2.0 x I0 a
15 44.8 -"4% 1.4 x 108
16 74.8 --3% 2.4 x 105

17'b 210. "-3% 6.8 x 108

18+ 390. -"2Z 1.3 x 109

i_ 670. z 1.6% 2.2 x i09
_0 9. ---- 2.9 x 107

21_* 3260. -*6Z I,i x 1010

*Sacurated on hiSh $ain. The measurement was

derived from Che low gain channel. This pulse
was assoczaced with :he second flash recorded

the U-2, and has no around-measured
counterpart.

PTobablt return stroke.

M. Brook et al

Reference, (23 )

one deduces thau the average value of power of

approximately l0 9 watts and the power in other

processes of the lightning flash ranged from 10 7 to

values agree, generally, with those obtained

(21) and Turman (22).

interesting to note that the values of the power

stroke measured at 20 Fun above the cloud and

ground at 20 to 50 km distant from the cloud

I
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are, for practical purposes, equal, that is, approximately

109 watts. This means that the optical radiation emitted by

the discharge of the return stroke was subject to the same

losses due to absorption, scattering, and reflection as the

radiation propagated through the respective intervening atmos-

pheres. The data shown in Table 4 indicates, however, that

values of these losses should differ.

Two important parameters to be considered in the moni-

toring of lightning by satellite are the spectral components

of the optical radiation and the rate of rise and decay of the

optical pulse. Barasch (24, 25) made a number of ground

measurements of the power of specific spectral lines radiated

from a single stroke. [See Brook (14) for additional

discussion.] Collimated photometers with interference filters

were used to record the radiation. The photometers were

pointed toward the greatest occurring lightning discharges.

The average values of spectral intensities produced by lightn-

ing and measured at 4140, 6563, 8220, and 8900 relative to

3914 _ are given in Table 6. (24) The number of pulses which

the averages represent are different because not all of the

4erectors were in operation at any one time.

4
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ORIGINALFAC_ IS
TABLE 6 OF pOOR QUALITY

Belati_ Spec_.ralIn_nsl_les Producedby Ll_htnlr_

'_evelen_h

ue/
S;mc_al Feature

m4m_ni_ e cb c,wl (6)b cb,_ _I(2) c
AIr fluorescence _ 1N (0,0) _2P(3,7) _alP(7,4) _1(2) _lP(l,0)

All ;_lJse,, i 1.2 _,0._ 2.1 _ 0.8 4.8, 2.8 0.8 + 0._
s=p_,/,_ . 4o9/2 _2_ 4_13 891_c

F_rs_ return s_rokes i 1.0 = 0.2 1.2 := 0.3 1.5 ± 0.6 0.5 ¢ 0.2
s==p.u,=ts_or= - m/2a 26_. 3o/3c 21/_.c

No%es: a. C - conClnuum.

b. Slltless spectrashow con¢inuum".obe present".hroughou¢the v_Jlblespec¢.--_,pro-
dueL_ _he main ¢oncrlbu¢ion_o siKmel8a¢ 3914 and _140 A.I

c. _ Increue data saml)/a_some iata have been used for which dis_nces were es_.lr.a_,e4..
See _:_x_.

d. To increase data sa=ple,s_ da:a from • _ear storm hav_ been u_ed w%rl_ou_¢orrec%ion
for distance. Es_Lza_;ed error Sn _,I4G-_/_91;_-A ratio is small. See _ax_:.

Source: G. Barasch
Reference= (24)

The most probable value of the 3914 _ line shown in

Table 6 ._- about 10 4 Wsr-IA -I. The total power radiated -

using the values shown in Table 6 - is equal to 4.3 x l0 9 watts.

Brook; (14) measured the incident peak spectral irradiances

for pulses in the same flash. The spectral irradiances

(Wcm-2A -I) _or eleven pulses are listed in Table 7 (14). The

source _. this radiated energy was from ground lightning

str'_es 27 km distant, i

!.

I

)

\

i,
i

I
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ORI_;NA'- :".'::-'[ IS

I'ABLE 7 OF POO,", QUALITY

INCIDENT PEAK SPECTRAL IRRADIANCES FOR PULSES
IN THE SAME FLASH, 27 km DISTANT

Spectral Spectral -Ratio
Irradiance Irradiagce

Time 3914 _ 656_ A 6563 A
msec Event W cm-2 A-I W cm"Z A"I 3914 A

-009 (a) IL 2.0 x lO"'12 7.8 x 10-]2- 3.9

000 (b) IRS l.l x I0"10 5.7 x lO-lO 5.2

040 (c) SRS 1.3 x lO"I0 4,8 x lO-I0 3.7

060 --- l.l x lO-12 4,9 x I0"12 4.5

077 (d) K 2.1 x 10"12 1,3 x I0-11 6.2

095 (c) SRS 1.6 x 10"11 1.1 x 10-10 6.9

096 (c) SRS 6.4 x 10"12 4.3 x I0"II 6.7

125 (c) SRS 2.5 x lO"ll 1.4 x lO"lO 5.6

126 (¢) SRS 1.2 x I0 "II 8.6 x I0 "II 7.2

141 (d) K 4.0 x 10"12 1.9 x 10"11 4,7

168 (c) I'RS 9.7 x I0"II 6.2 x 10"I0 6.4

Legend IL • First Leader Ave. 5.6
IR$ - First Return Stroke
SR$ • Subsequent Return Stroke
K- K- Change
l'RS - A New Channel IRS

Sourcel M. Brook
Referencel (14)

*Computed by the author

The average value of the ratio of the irradiance of the

6563 A to 3914 A for all pulses shown in Table 7 is 5.6 as

compared to the value of 2.1 shown in Table 6. The difference

in these values is indicative of the difference in the chemi-

cal composition of the atmospheres in which the lightning

occurred and, also, through which the energy is propagated.

1982019048-019
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The time histories of the various optical pulses are

governed by the type of discharges occurring in the thunder-

cloud. The rise time of integrated optical pulse is approxi-

mately I00 ,_ s; whereas, its decay time is approximately

300 _ s. These very fast rise times can be used to discri-

minate against d.c. and very slow varying background optical

radiations.

The above electrical and optic_l characteristics of

lightning are the most important in the design of optical

systems for detecting and monitoring global thunderstorm

activities. The values of the various parameters are shown

in Table 8.

1982019048-020
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OF POOR QUALITY
TABLE 8

Source Characteristics of Lightning

i. Peak Power

Return Stroke ..................... l09 - 1012 watts

Subsequent _trokes ................ 107 - 10 8 watts

2. Electric Field

Signal Strength
at i0 km _V/m

6
•01 }5Hz.................... i0

1 MHz .................... 104
3

l0 >UHz.................... i0

I00 MHz .................... 10 2

3. Optical Power

Relative Spectral Intensities

for all Pulses Barasch 124)* Brooks (14)*

3914_............................l 1
4140 A ............................ 1.2

6563 A ............................ 2.1 5.6

8220_{............................ 4.8

4. Time History

2s

a. Electrical

Rise Time (return stroke) ..... 0.i to I0

Decay Time (return stroke) .... i0 to 50

b. Optical

Rise Time ..................... i00

Decay Time _ 300o • • i • • • • • I • • • i e • • • • •

*Derived by author from data in Table 7

t=

1982019048-021
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III- Satellite Liqhtninq >_onitorinq Systems

1. General

In the early 1960s the satellite was envisioned as the

principal component of world-wide radio frequency communi-

cation and navigational networks. The design and development

of the networks required knowledge of the interaction of the

communication radio wave and the ionosphere. The study of the

interaction is complicated by the "ever-presence" of noise

radio waves occupying the same frequency spectrum. Specifi-

cally, noise signals in the frequency range from l0 KHz to

500 MHz are a source of potential interference to radio

reception in a satellite. The so' rces of these noise signals

are the galaxies, radio transmitters on the earth, and terres-

trial lightning discharges. Lightning discharges from thunder-

storms could be, however, the limiting factor because the

energy radiated by a single discharge is much greater than

the energy radiated from any other man-made source.

The radio frequency (r.f.) signals produced by lightning

undergo modification, affecting amplitude and phase, as they

propagate through the volume of thunderstorms, through the

lower atmosphere, and primarily through the ionosphere. In

the iono6_herg, the signals suffer losses due to absorption,

reflection, and refraction. The magnitude of the losses is

a function of electron and ion densities in the ionosphere

and of its critical frequency.

The scientific missions of the satellites listed in

Table l, page 2, were essentially to study the nature of

1982019048-022
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these losses. In addition, some of the satellites using

electrical and optical techniques, were instrumented to

measure the properties of signals produced by lightning

flashes. The scientific missions of, the lightning detec_tion

systems used by, and the experimental data acquired by these

satellites are presented in the subsequent sections.

2. Radio Frequency Systems

2.1 Lofti-i (Low Frequency Trans-Ionospheric Satellite)
?

Lofti-i (Low Frequency Trans-Ionospheric) satellite was

the first of the Navy satellites designed to explore low fre-

quency wave propagation in the ionosphere. It was designed

as an experiment to determine the magnitude of the propagation

loss of VLF (3000 to 30,000 Hz) radio signals traversing the

ionosphere. This loss is caused by the absorption of energy

as the VL_ interacts with the ionized medium, and is a function

of the frequency of the VLF, the electron density of the iono-

sphere, the collision frequency, and the angle of incidence.

Most of the loss occurs in the D region, that is, at altitudes

between 60 and 130 km.

The system concept of the Lofti-i experiment is shown

in Fig. 3 (Leiphart et al, Ref. 26). It consists of three

radio linMs, one from a shore 30 k-w VLF (18 KHz) transmitter

to the satellite, one from a shore transmitter to a shore VLF

(18 KHz) receiver, and one from satellite to shore UH_

(136 MHz) receivers. The shore-base4 transmitter radiated VLF

signals which were intercepted by a 20" diameter loop antenna

and a 15 foot long whip antenna. The locations of the anterunas

i
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on the satellite are shown in Fig. 4. The VLF (18 KHz) signals

were processed by an amplifier, having a band width of 20 Hz.

The output was recorded as a peak field strength (mlcrovolt

per meter). The processed information was telemetered via an

UHF (136 MHz) radio link to various ground receiving stations

located around the globe. The UHF transmitter was located at

Panama. An example of the type of data received is shown in

Fig. 5. (The random short duration "pips" preceding the first

time pulse , TI, are identified as lightning pulses.)

During a dawn pass, at a height of 400 km over Central

America, and during the daylight part of the pass, several

noise peaks due to lightning had values between l0 uV/m and

00 uV/m. In the absence of the ionosphere, it can be shown

that a typical 10 Kz signal at the height of 400 km would have

an electric field value of 1 mV/m. Leiphart et al (26) indi-

cated that at this particular time the propagation loss

through the ionosphere for the 18 KHz signal was approximately

30 db. Applying this loss to the computed i mV/m signal, they

derived an average value of 32 db for the lightning pulses

which is in excellent agreement with the Lofti-I measured _alue

The Lofti-1 data indicated that 50% of the time the VLF

(18 KHz) signal is reduced less than 13 db at night and less

than 38 db by day as it traverses the ionosphere.

The Lofti-1 measurements indicate that vLF signals can

and do consistently penetrate the ionosphere. Since pear

energy of a lightning discharge lies within the frequency

region 8 to 20 KHz, and has value 10 4 times greater than at 1
I
i
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i00 ._Hz, the VLF tec.hniques could be used to detect and

measure lightning pulses. Also, by the addition of three

orthogonal loop antennas to the receiving network of the

Lofti-I satellite, the geographical regional location of the

source of lightning could be determined. The accuracy,

however, would not be adequate to satisfy the requirements

listed in Table 2, page 4.

2.2 Alouette Satellite

The primary mission of the Canadian Alouette satellite

was to study the absorption properties of the topside of the

ionosphere by problng it with pulses of r.f. signals trans-

mitted from equipment on orbiting satellites. The equipment

on satellites is referred to as a topside ionospheric sounder

(27 - 30). The concept was to irradiate the topside of the

ionosphere with pulses of radio frequency waves. The power

radiated from the satellite transmitter was i0 watts. The

frequency of radio waves was varied from 0.4 to 11.5 MHz.

They would interact with the ionsphere and be reflected back

to the satellite. The reflected pulses were received by two

orthogonal dipole antennas, one 150 feet to receive radio

signals having frequencies equal to and less than 4.5 MHz, and

the other 75 feet for receiving signals from 4.5 to ii.5 MHz.

The output of the receivers would be in4icative of the magni-

tude of absorption experienced by the r.f. pulses.

These receivers made it pos.-ible to detect r.f. pulses

produced by lightning. Homer (17) analyzed the Alouette data t

acquired over Singapore and Central Africa, over which areas
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lightning flashes were recorded by ground-based meteorological

instr°_nents. The Alouette did, indeed, detect these lightning

flashes. The correlation between the satellite and meteoro-

logical data was poor. The Alouette r.f. pulses were too

distorted to derive any significant and meaningful conclusions.

2.3 Ariel III Satellite

The detection and the measurement of radio noise produce_

by lightning require instruments specifically designed for

that purpose. The instruments on Loft1-1 and Alouettewere

not designed to detec; lightning; whereas, t._os Dn Ariel II

and particularly Ariel III were.

The design and the fabrication of the equipment, the

scientific missions, the operational requirements, etc., are

described in detail an the entire issue of "Proc. of Royal

Society", Section A, 311, 1969. It is not the intent in this

review to report on all of the engineering, operational, and

scientific aspec.ts of ;Lr_l III but solely to confine this

review to those aspects pertaining to the measurement of radio

frequency noise signals.

The sources of radio frequency noise capable of reaching

satellite altitudes are the high power electrical equipment,

_he radio transmitters operating with fixed frequencies,

galactic noise, and lightning discharges. Morner (17) com_uted

the characteristics of the field which would be expected in a

band width of 1 Mc/s at a height of 103 km over one of the

main thunderstorm areas if there were no ionosphere. The
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results are shown in Table 9. [See Pierce (13) for similar

calculations. 3

TABLE 9

Estimated Field Characteristics of Atmospheric

and Galactic Noise _Heiqht. i000 km_ Band Width 1 KHz 1

Atmospheric Noise in the Absence of

the Ionosphere

Power Flux

Frequency Amplitude (10 -6 volts/m) Density

._/qz . Peak Ave. Watts/m2-

0.0_ 8000 300 8 x i0 -10

i0 ii 3 3.9 x 10 -14

i00 0.8 0.3 2.4 x 10 -16

500 0.08 0.05 4.9 x i0 -18

Galactic Noise

i0 0.19 6 x 10 -17

100 O.ll 2 x 10 -17

-17
500 0.09 1.2 x i0

One earlier s_.tellite, Ariel II, was launched in March,

1964. It had, among others, a primary mission to investigate

galactic and ionospheric noise [Ladd et al (33)]. Its experi-

mental data revealed that a major contributor to total iono-

spheric noise was lightning discharges. Ariel II provided

sufficient evidence that lightning r.f. pulses are measureable

at satellite altitude; however, to do so, it is essential to

discriminate against the existence of other r.f. noise signals.

The experiments on Ariel III were designed to count the number

of lightning pulses, to test a particular discrimination

technique, and, also, to test a technique to define the source

area from whence the r.f. noise pulses originaued. In order to

J °
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achie_-e these _xperim_ntal objectives, it was necessary to

include the m.easurement of ionospheric electron density and

temperature, of the distribution of molecular oxygen, of

galactic and ionospheric noise, of nat_Lral VLF radio, and of

h.f. nolse from thunderstorms.

T_e discrimination concept is based on the fact that

lightning flash generates a continuum of r.f. energy, the

signal amplitude of ",hich varies continuously with frequency.

On the other hand, the man-produced noise, such as from radio

transmitters, produces discrete narrow band pulses. By using

two receivers, tuned to two c__equencies, "I and f2' differing

in value by 4 KHz or less, it is possible to discriminate

against man-made r.f. noise. Examination of the data pre-

sented in Fig. 1 shows that the amplitudes of two signals that

differ by 4 KHz will be equal. Amplifying these two signals

by means of identical r.f. tuned amplifiers will yield output

signals that have the same amplitude values. The discrete

frequency r.f. pulse, say from a ground-based transmitter,

inserted into the receivers, will yield, on the other hand,

output signals having appreciable differences in amplitudes.

Hence, whenever the amplitudes of the output signals of the two

receivers are equal, they indicate that the source of the

input signal is lightning. Whenever the two outputs differ in

Lamplitude, the source of input signal could be discrete fre-

quencies radiated by transmitters.

l

For the Ariel Ill, the frequencies chosen were 4.998,

' 5.002, 9.998, 10.002, 14.996, and 15.004 ,_Hz. The reasons |

!
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these were chose_n were (i) one of the two frequencies may be

expected to be sonLewhat higher tha/_ the critical frequency,

and (2) the value of the galactic noise is expected to be

much less than the value of the noise produced by lightning.

The r.f. noise signals were intercepted by two loop

antennas on the satellite. They were mounted on a conical

part of the satellite, with their planes orthogonal and inter-

setting along the spin axis [Harden and Harrison (31)]. One

loop %_s used for I0 >tHz receivers and the other for 5 and

15 >/qz. Calibrating units were integrated with the receiver

system. The receivers were checked during the flight for

sensitivity. With the use of loop antennas, the attitude of

the satellite had to be know. It was measured independ-

ently to an accuracy of *- 5o; therefore, the receiver output

could be corrected accordingly.

To minimize the error in counting the pulses, the

electronic system was designed to count the average ampli-

tude of the signals when the satellite was orbiting over the
f

thunderstorm and the number of r.f. signals was large. It

counted the rms value, when the number of signals was decidedly

less; that is, the satellite was at greater distance from the

source.

In addition to counting the r.f. signals, the Ariel III r

concept addresses the problem of determining the geographical

location of the source at any given time. It maMes use of the

interaction of the r.f. signal with the ionosphere.
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In traversing the ionosphere, the radio wave is refracted.

?he degree of refraction is a function of the elect-on

density of the ionosphere and the angle of incidence. For a

given electron density there exists a frequency, labelled the

critical frequency f0' of the r.f. wave below which frequency

the wave cannot penetrate the ionosphere and above which

value it will penetrate and will be refracted. The refraction

is governed by Snell's Law. It states that

= = = sec _ or _ = sec -! _ (i)
_0 (f0)

where f = frequency of the signal

fo = the critical frequency of the ionosphere,
and

_ = the angle of incidence of signal to the
ionosphere

It is obvious the angle of incidence is a monotonically

increasing function of radiated energy anda monotonically

decreasing function of critical frequency. This means that

the satellite should observe noise signals radiated from the

sources on the earth on the highest frequencies earliest in

time followed by successively lower frequencies as it

approaches closer to the source.

The critical frequency, f0' is proportional to the

square root of electron density of the ionosphere, _nd it

varies with season, time of day, and geographical location.

When the observing frequency equals the critical fre-

quency, no penetration occurs even when the angle of incidence

is zero or directed vertically upward. The ionosphere, there-

fore, actually acts as an "IRIS", the apert :re of which is

governed by the incident angle and the observing frequency.
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Stated another way, it is a shield wi_se shielding function is

a function of frequency and incident angle.

Using the fact as e_pre_s_d in equation (!), and assuming

a flat earth and a thin and horizontally stratified iono-

sphere, and the simplest of geomet_-ies, the radius, R, on the

earth from which noise energy of a given frequency, f, will

reach the satellite at a height, h, is expressed by the formula

2 _'
th) _fo __

r.f. signal can only be received from a circular area of

radius, R, as shown in Fig. 6 [Homer - Bent (32)3.

_'\_

;_ \,xx

, \

/' /
/ ,

!

,!

/ /

E_th

Fig. 6

Area of visibility from satellite
(simple theory)

Sources F. Morner and R. Bent
Reference, (32)
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Only approximate values of R are computed by the formula.

More precise values must consider such factors as angle of

incidence, deviative and under,at,re absorption, multiple

hops, ionospheric tilts, ionospheric inhomogeneity, varia-

bility of sferic (RF) amplitudes, etc.

In Table I0, there are computed values of R and of area

that Ariel III satellite views on the surface of the earth.

In this calculation an average value of 6 >J_z was assumed for

the critical frequency,
_0"

TABLE 10

Area Viewe_ by Ariel III

2
AtR )

f R

5 0 0

I0 1039 1.08

15 1697 2.87

25 2939 8.41

It is evident from the table that when the frequency of

, the noise approaches the critical frequency of the ionosphere,

the intensity approaches zero.

An example of the radius of visibility as well as of

ionospheric absorption is shown in Fig. 7, which represents

data taken during orDit 31, May 7, 1967 [Homer and Bent (32)].

1982019048-033



-30-

(
i" ,_. |.)

_ ' .

;: QUALITY

3COO ]

:OOO i

1OOO _CMHZ

IS 7

DiE _£G,CN
iO MHZ

&_SORPTI_N 48 O 5" _ .,/ISMhlz

O J

5,
4-,

F REGION I

3
AkBSORP TICN _IB

O - "'- IS M_Z
2

8 I0t2,6;8 20 220146 L MT
J 1 Ill . I I . J_ J

40 - -40 40 80 LAT

Ablorpllon and fI_IIU$ 01" Sl$1bltl[V for ftht:ofld shown in F[tUl_ 4. Ofbl( ._l,

? Mly 1967

Fig. 7

Sources F. Homer and R. Bent

Reference, (32)

The computation of the absorption was based on an estimate of

electron-height profile, on the collision frequency which

varies as electron density, and on the variation of electron

density in D and E layers with latitude and local time. I_

the ionospnere is not horizontally stratified and the criti-

cal frequency varies rapidly with latitude and longitude,

the atmospheric noise signals can penetrate the ionosphere
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i

in regions of low critical frequencies, after it has been

propagated below the ionosphere from a storm in a region where

the critical frequency is high. The apparent position of the

storm would then be misleading.

The experimental results from a satellite pass over a

thunderstorm region of eastern Europe illustrate the detection

and discrimination principals. These are show_., in Figs. 8 and

9 [Homer and Bent (35)]. It is evident from Fig. 8 that

signal amplitudes of the two receivers _i0.002 and 9.998 >_z)

are equal; hence, the source of these signals can be attri-

buted to lightning discharges occurring in the thunderstorm

beneath the satellite. The satellite was passing from north

to south (Fig. 9). The first noise signals were recorded at

position "A", and the last were recorded at position "B".

The ratio of received frequency to the critical frequency

shows that the source of noise signal might be located between

the two broken lines shown in Fig. 9.

v

1982019048-035



-32-

0 _, _ ,/ , ," . , ,

i ....... .......
pgr _t_tll

II0

e40

_80 -

I?O

IIIO oO Covet b

_00 ¢ : • • i _ l I I L I I I i i i • L • • i : | O_IPS.IN_OeS4

t--,OOO _m.----4

A I_ --_0 O0_l ,,.N s
-- --.41 _PqNil_Ms

tOO

qlO _

120 _

i"10

_40 _ 3 lip, vim

,o4._ 4 '_,
,.o_> ..--2 \',

! et 114111III ISift,,

A B

Storm ove_ Easten'l Europe July 24 1967, 17.30 U.T.

Fig. 8

Digital Counts of Lightning Discharges

and Average Voltage Output

Source: F. Homer and R. Bent

Reference: (32)

u_
I

1982019048-036



-33-

ORIGINALPAGE IS
OF poOR QUALITY

Fig. 9

Sources F. Homer and R. Beret
References (32)
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Records from the British >_eteorological Office taken at the

time the satellite passed overhead indicated the presence of

storms along thls path. The marks "X" indicate the position

of the storms at the time. The maximum recor@ed field strength

in the satellite during this period was 3.6 uV/m. The area

of the ground viewed by the aerials at the time was 8.3 x 105kin 2.

In summary, the Ariel III experiments verified the detec-

tion concept and the technique to determine the gecgraphical

area of the thunderstorm The discrimination tec_u_iques can

be improved substanti_lly by adopting in the design of the

=-eceivers the latest circuits that enhance selectivity and

increase the reduction of extraneous noise signals. The
t

improvement in the location of the sources of noise requires

considerably more thought. One idea is to combine the detec-

tion concept with an optical system to locate the geographical

source. Another idea is to combine the detection concept with

a "time of arrival technique" to locate the g_ographical

sources. Undoubtedly, there are many other combinations that

can be used. 4

Assessing the available experimental data of Ariel III,

one can only conclude that the concepts and techniques do not i

provide the acc,lracy that is needed to satisfy the require-

ments lised in Table 2. They can, however, be applied to

monitor thunderstorms which occur over extensive areas.

C
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2.4 Ionospheric Soundinc Satellite IISS-blt _

The results of Ariel III reveal, clearly, that the

accurate detection a'.%dthe counting of global thunderstorm

activity by h.f. sensors in satellites require, at any given

time, more precise knowledge of the electron _ensity, of

electron density altitude profile, of the positive ion con-

centration, and of the electron and ion temperature para-

meters that _ffect the propagation of h.f. signals through

the ionosphere. The ISS-b instrumentation includes, in

addition to the radio noise (h.f.) measurements, the simul-

taneous measurements of these parameters. This report will

only be concerned with the measurement of high frequency

noise (h.f.). [For a description of the measurements of

electron density, etc., see Kotaki and Katoh (34) and qotaki

et al (35)].

The mission of ISS-b was primarily to study certain

properties of the ionosphere. A secondary mission was to

count the radio frequency noise signals produced by

terrestrial lightning.

The Ariel III concepts to detect and to determine geo-

graphical source of lightning were used in the ISS-b satel-

lite. Four narrow banu heterodyne receivers with linear

amplifiers were used for detection and discrimination. The

ionospheric shielding effect was used to determine geo-

graphical location.

?he configuration of the components on the sate!lite is

shown in Fig. I0 [Kotaki et al (34)].

i
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Fig. I0

CoD_iguration of Components on ISS-b

Sourcet M. Kotaki and C. Katoh
Reference: (34)

The r.f. noise signals were "picked up" by two dipole

antennas with lengths of 36.8 m and 11.4 m. These antennas

were installed orthogonally on the satellite and were perpen-

dicular to the spin axis of the satellite. The data were

transmitted to ground stations via V_F networK.

The ISS-b satellite was launched in Japan in February,

1978, into a circular orbit at an ;Ititude of 1000 Pun with an

orbital period of about 107 minutes and with an inclination

angle of about 70° • The orbital plane of the ISS-b rotates
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westward around the earth's axis by the rate of 3° per day

relative to the earth-sun direction, that is, the local time

at the satellite position on a fixed latitude shifts Dehind

with the rate of 12 minutes per day.

Dur._ng the lifetime of ISS-b, it accumulated an abundance

of data on lightning. Measurements were repeatedly taMen

every 64 seconds. The radio noise data were recorded during

the first 20 seconds. Since the period of the satellite

orbit was 107 minutes, I00 observations of terrestrial r.f.

noise were made during one revolution.

The number of noise signals accumulated during ev_.-y

observation period is summarized for ever_ 10 ° x i0 ° latitude

and longitude of the surface area that is viewed b. the

satellite. The total number of lightning discharges is

normalized by the observation time, and the value obtained is

defined as the occurrence rates of thunderstorms. The experi-

mental data acquired were processed by means of a computer.

An exam_nation of Figures iI, 12, and 13 _il I, as dis-

cussed by Kotaki (34) and Kotaki and Katoh (35), reveal the

types of radio noise and the effectiveness of the ionospheric

shielding concept. Figures lla, b, c, and d are examples of

different types of radio noise signals that were oDtained.

Each group in Fig. Ii represents the h.f. receiver outputs of

Channel 1 (2.5 ,kHz), Channel 2 (5 MHz), Chann_.l 3 (i0 MHz),

and Channel 4 (25 MHz). The dotted lin_.s indicate the analog

output levels and the crosses the digital counts. The ordi-

nate on the left side of the _raphs expresses the analog
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output in arbitrary units; wher _t the ordinate on the right

side expresses the digital output in terms of counts per

second.

The lightning pulses detected by ISS-b were compared

with the I.R. photographic images of thunderstorm regions ac- _,

quired by the Geostationary Meteorological Satellite (GMS).

The r.f. noises recorded at this time are shown in Fig. ii.

The tra ectory on the earth of ISS-b orbit and the photo-

graphic I.R. image taken at 1800 hr. UT on October 19, 1978,

are shown respectively in Fig. 12 and Fig. 13.

Fig. ii indicates that only galactic noise was recorded

in all channels as background noise. This observational

result agrees with the fact that no cumulo-nimbus existed

around the area concerned.

The radio noise observed at the position "b" (14.0 ° S,

ii1.3 ° E) in Fig. 12 is shown in Fig. llb. Since the critical

frequency of the ionosphere benea.xk the satellite was 8.7 MHz

at the time, according to the relation between fc/f and R

given by the eq. (2), noise signals should be observed at

Channel 3 (I0 }Rqz) and Channel 4 (25 _Rqz) if the lightning

discharges occurred within the circular region of radius of -

about 500 Man (fc/f -- 0.87 in this case). As is seen from the

observational results shown in Fig. ii, there are some weak

increases of analog ouput levels and digital counts at about

8, i0, 14, and 16 seconds in only Channel 4. On the other

hand, only the background noise is measured at Channel 3. /

This fact suggests that the radio waves of the 25 MHz component
'l

L-| ,
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emitted from lightning discharges occurred at a distance of

i000 to 2000 _m from the sub-satellite point. In this case,

there were no thunderclouds over the area surroundlng the

position "b" of Fig. 12; hence, the atmospherics component

corresponding to the frequency of Channel 3 (i0 MHz) could not

be received because of the "shielding" phenomenon.

The critical frequencies of the ionosphere at the time

of observations were 9.9 N_z at the position "c" in Fig. 12
i

and 8.3 >_z at "d" in Fig. 12. Several bursts of impulsive |

radio noise are received at Channel 3 (10 >_z) and Channel 4

(25 >SHz) in these examples. For reasons stated above, the i

lightning discharges appear to occur within the circular

regions of radius of several hundreds of kilometers centered ,
{

at the position "c" or "d", respectively. Photograph image, .

i

Fig. 13, shows that many cumulo-nimbus existed around the area

near "c" or "d" in Fig. 12. Thus, this fact demonstrates

indirectly that the impulsive radio noise received by the

ISS-b might be emitted from the lightning discharges occurring

near the sub-satellite point.

Four lightning discharges are received at the position

"c" in Fig. 12 and six lightning discharges are received at

"d" in Fig. 12 as seen in Fig. llc and Fig. lld, respectively.

Since the critical frequencies of the ionosphere beneath the

satellite at the position "c" and "d" in Fig. 12 are 9.9 MHz

and 8.3 MHz, respectively, the fields of view at "c" and "d"

are restricted within the circular area of radius about 130 Mm

and about 500 Mm, respectively. Therefore, lightning frequencies

P
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per unit area at "c" and "d" become to be about

1.2 x l0 -5 sec-lkm -2, and 1.2 x l0 -6 sec-lkm -2, respectively.

?hese results are in good agreement with Homer's (17) esti-

mation that the lightning frequency per unit area counted by

lighting flash counters operating in HF band was about

10 -5 sec-lkm -2 at the time of maximum thunderstorm activity.

The above cited illustrations demonstrate the efficiency

of the h.f. concept to detect terrestrial lightning. The

results of ISS-b indicate convincingly that terrestrial

lightning that occurs outside the area as defined by

equation (2) will, in all probability, not be detected. Since

the defined area is a function of the critical frequency, the

ISS-b data also reveal that the detection will be governed by

the time of and location (latitude) occurrence of the thunder-

storm.

Kitaki and Katoh (34) found that the global frequencies

-i
of lightning discharges for the four seasons are about 64 sec

-I
in the northern spring, 55 sec in the northern summer,

-i -1
80 sec in the northern fall, and 54 sec in the northern

winter. These results are about two times as many as that of

_urman's result of 30 sec -I. They also found that, based on

34 impulses attributed to lightning discharges, the peak power

flux was 1.4 x l0 -13 W m-2 (KHz) -1. This value is comparable

to the value of 3.2 x l0 -13 W m -2 (KHz) -I derived by Morner

for the altitude of 1000 Mm. Kotaki and Katoh (34) deduced

that peak r.f. power radiated by terrestrial lightning varied

2.3
inversely as (frequency) • This relationship differs from ,_

"1
I
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the data shown in Fig. 1 which show radiated power (amplitude

of signal shown on the graph) varies inversely as frequency,

and it also differs from Weidman, et al (19) who found that

peak power varied as f-i from 104 to lO 6 Hz and as f-2 from

10 6 to 108 Hz.

These differences reveal that the relationship between

radiated power vs. frequency is actually not known. More

experimental data are required before it can be accepted

explicitly.

The ISS-b experiment shows that global lightning dis-

charges can be observed by using h.f. receivers in satellites•

However, it also reveals that the accuracy of the number of

counts and of the locations of the sources of lightning are

poor. Interference from ground transmitters affected 30% to

50% of all the data. This interference introduces a large

uncertainty in the data. The spatial resolution is also very

poor because the condition of the ionosphere plays a major

role in the computation. The computations of scanned circular

area by ISS-b are more accurate than Ariel III because ISS-b

measured simultaneously the value of fc

2.5 Vela 4B Satellite

The mission of the Vela series satellites was military in

nature. The instruments on board did detect and record pulses

produced by lightning flashes. Some of the r.f. data acquired

by Vela B satellites was made available to those interested in

the detection of lightning flashes.

J
?

_T
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Vela 4B was launched into a nearly circular orbit with a

radius of 19 R E (earth radius), inclination 35 ° , and a period

of 4.6 days.

Chiburis and Jones (36) analyzed the v.u2_differential- i

group-time delay data acquired by the Vela 4B satellite

during a pass over the geographical region bounded by i0 ° to _

35 ° North latitude and 55 ° to 135 ° West latitude. The purpose

of the analysis was to test applicability of the differential-

group-time concept to severe storm identification and location.
L

The differential-group-time delay concept utilizes the

dispersive effects inherent when electromagnetic _¢aves are

propagated through the ionosphere. Ligntnin_ discharge pro-

duces a spectrum of electromagnetic waves, extending from

3 KHz to i00 MHz. The higher frequency waves, i0 MHz to

i00 MHz, propagate through the ionosphere. As a group of

waves, the lower frequency waves experience a longer group

path delay than the higher frequency components. These various

delays are calculable if the electron densities are kncwn

along the path of propagation. The differential-group-time

delay, A t, can be approximated by the relation

_t = 1.35 x I0 -7 f_ - _l2

f2 f2 sec t Nds (3)2

where f2 and fl are the center frequencies of the higher and o

lower of a receiver channel, _ is the "look" angle which is the t

complement of the elevation angle, and J Nds is the total

t:electron content of the ionosphere. A variation of two

i
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differential-group-time delay _ as a function of total electron

content and the "look" angle aze shown in Fig. 14. It is to be

noted _,_ the group delays increase w___., increased electron

content and "look" angle.

In order to utilize the "group-delay" concept to detect

terrestrial lightning r.f. pulses and to discriminate against

the other type r.f. signals elaborate electronic circuits

were used. (Details on the circuitry are not available in the

open literature.) Two monopole antennas were used to collect

the noise signals and to feed them through a passive RLC

filter network to each of the VHF receivers. The antennas

were located on the satellite in a plane perpendicular to the

direction of the earth rotation at an angle of 60 ° to one

another.

To measure the group delays three VHF and one UHF

receivers were used in Vela 4B pair of satellites. The typical [

receiver has four r.f. stages, each with a gain of 20 db, i

followed by a detector and video output stage. The VHF

receivers have center frequencies of 27.70 (Channel "A"),

34.58 (Channel "B"), and 42.94 (Channel "C") _z. The

receiver band widths varied from 1 to 2 _Hz.

The satellite data c_ Vela 4B indicate that r.f. radi-

ation produced by lightning was weakly identified and was not

accurately loc_ted. The difference in the number of thundery

regions that were identifled with those that were actually

identified by ground measurements was great.
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At best, the results of Vela 4B indicate that the pulses

produced by lightning can De discriminated from other noise

pulses by the studious application of the differential-group- '_
I

time delay concept, i
I
I

2.6 Radio Astronomy F.xplcre r _RAE-II Satellites !

I
The mission of RAE-1 was primarily to investigate scien-

I

tific problems related to astronomy. Since its instrument

package included tuned r.f. receivers that covered the fre-

quency range from 0.2 to i0 MHz, it intercepted and recorded

terrestrial and galactic sources of radio noise. Herman,

et al (37) analyzed the RAE-I data in order to establish the

spatial, temporal, and frequency characteristics of the

terrestrial radio noise at an altitude of 6000 km.

In their analysis, they made use of the refractive

property of the _onosphere to develop a detection concept

which differ,_ scmewhat from the one discussed by HDrner (17). I
|

The refraction of a radio wave traversing the ionosphere

is governed by Shell's Law as formulated in equation (1).

Examination of equation (1) reveals that the higher fre-

quencies of the radio waves will be refracted less than those

cf lower frequencies. Therefore_ an orbiting satellite will

detect first the higher frequency waves followed by the

lower frequency.

The refraction of a radio wave traversing the ionosphere

is a function of its frequency and of the critical frequency

of the ionopshere, which, in turn, is a function of its electron

'7
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density. It also varies diurnally with the height of the

ionosphere and with latitude and longituae. The value of the

critical frequency can, therefore, be computed or predicted

for a given time and geographical location.

Fig. 15 (37) is an example of the variation of the crit-

ical frequency. It depicts the critical frequency for i0 hours

universal time (UT) and 12 UT in December, 1968. The position

of the twilight line separating day from night for these two

times is shown as a dashed line. The solid line which is

superimposed on this map is the orbit of RAZ-I. Gross

features of diurnal and latitudinal variations in f0f2 (f0f2

is referred to the critical frequency of the F 2 layer in the

ionosphere) are evident in the contour maps, and as the sub-

solar (noon) position shifts from 30 ° E longitude to 0O

between l0 UT and 12 t_, so does the t_ilight line shift in

the same direction. Also, the region of minimum value of the

critical frequency shifts likewise. It is obvious that pre-

diction of maps of critical frequencies can be used as quali-

tative guides in determining the extent of ionospheric shield-

ing and distribution of terrestrial radlo noise.

An illustration of the combined effect of the ionospheric

shielding and terrestrial noise distribution is shown in

Fig. 16, where the noise signals, measured as antenna temper-

atures for the fzequencies 9.18, 6.55, 4.7, and 3.93 MHz are

plotted as function of time for orbital period 00 UT to

0430 UT, December 2, 1968. Examination of the sequence of

times at which RAE-I received each frequency in the raw

i
-i
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Fig. 15
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MHz. RAW-1 Satellite

Fig, 16

Sources J. R. Merman, et al

ReZerences (37)
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clearly reveals the shielding effect; ie., 9.1S M/qz is received

at 0230 5"F, followed by 6.55, 4.7, and 3.93 Y/qz at 0240, 0244,
!

0246 L'_, l'espec_.vely. !

To illustrate the concept, herman et al (37) computed. j

the radii R 1 and R 2 for frequencies 6.55 MHz and 9.18 MHz,

resvectively, using c_quation (i) end the following equation_

R 2 = R 1 �_t Vg (4)

whet t is the time delay between penetration of
9.18 and 6.55

and Vg is the velocity of subsatellite point along
the surface of the earth

From Fig. 16 it is evident that the 9.18 MHz penetzated

the ionosphere at 0230 5_f, whereas 6.55 M/_z penetrated at

0240 UI'. This yields a _ t = _'.0minutes. The velocity, Vg,

of the sub-point of RAZ-I was 179 kin/rain. The computed value

of R 1 = 1274 km and of R 2 = 3064 kin.

RAE-1 was launched in July, 1968, into a nearly circular

orbit at an altitude of approximately 6000 _m, with an incli-

nation of 121 ° , and a period of 3 hours and 45 minutes. This

orbit allowed the satellite to cover geographical latitudes

59 ° S to 59 ° N.

The satellite is equipped with a 37 meter dipole antenna

coupled to a burst receiver which swee@s continuousl i through

the frequencl range from 0.202 to 5.4 MHz. In addition, it

is equipped with two Vee antennas coupled to two Ryle-Vonb_rg

(RV) receivers operating at fixed frequencies from 0.45 to

9.18 MHz. The beam width at frequencies of 3.93, 4.7, 7.55,

and 9.18 MHz are respectively 23 ° x 52 ° , 15 ° x 46 ° , 14 ° x _6 O,

and 13 ° x 27 ° • ?he antenna configuration is shown in Pig. 17.

i

"4
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$ourcez J. R. Herman, et al
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Fhe main lobe of the bottom Vee antenna and back lobe of the

top Vee antenna always view the earth, whereas the back lobe

of the bottom antenna and the front lobe of the top antenna

view outer space. The orientation of antennas allows the

determination of the noise arrival direction so that the

contributions of various sources may be separated.

Fig. 18 depicts the radio noise distribution derivc_

f:om _E-I data on 9.18 MHz for December 2 - 6, 1968,

0000 - 0800 L_. Counter levels are dB above 288 ° k. It is

evident from these curves that the most intense noise is

observed over the major land masses, while the lowest noise

levels are over the oceans. Most of the high t70 dB or

greater) noise levels are in good agreement with the values

found by 0S0-5, DMSP, and Ariel III.

The concept of sequential penetration of the ionosphere

could be used to define the region a little more precisely

than that provided by the use of equation (2). However, this

improvement in area definition could be achieved only by the

use of a more complex data processing system.

3. Optical Systems

From February to October, 1965, nighttime lightning

storms were first observed by the Orbiting Solar Observatory

(OSO-2B) satellite (38) and (39). The lightning flashes were

identified by the exponential decay of the signal after each

flash. The lightning was associated with large systems of

thunderstorms. In 1969, these results were confirmed by 0SO-5.

<
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?he first Vela satellites, launched in the early 1960s,
!

included instruments designed primarily to detect the optical

radiation of the "fire ball" produced by nuclear explosions in

the atmosphere. The "fire ball" also, as is will _nown,

contained within it many lightning flashes. Special optical

instruments, designed by Sandia Laboratories (40), were

installed in four Vela satellites which were launched into

space in the early seventies. They were positioned in an

5
inclined circular orbit with a geocentric radius of 1.1 x i0 km.

?he electronic circuitry was such as to record the time history

of optical signals near the earth. The power threshold of

the optical energy was I012 watts.

Notwithstanding the high detection threshold, the Vela

satellite recorded many signals that had the characteristics

of lightning. The Vela experiments established the fact that

optical energy radiated by lightning could be detected by

properly designed instruments on satellites. It was recog-

nized, as a consequence of these experiments, that it is

possible to monitor and count the number of global thunder-

storms by more sensitive optical instruments, beth for the

detection and the location. In order to conduct satellite

meteorological studies, during the sixties NASA and NOAA

developed visual and thermal (IR) image detection and location

systems that were more sensitive and more precise, respectively.

: The sensitivity and the spatial resolutions were very much

improved over the Vela and OSO instruments. The defense

establishment incorporated many of these improvements in its

!
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series of "Defense Meteorological Satellite Program" (DMSP)

satellites (41).

Analyzing selected photographic images produced by D_ISP

satellites, Sizoo _nd Whalen (42) detected the presence of

horizontal streaks along a squall line. These were inter-

preted by them and by Orville and Vonnegut (43) to be the

radiation from lightning discharges.

The following sections will contain description and

discussion on the optical systems used on 0S0-2, 0S0-5,

DMSP-33, DhSP-2, and DMSP-3 satellites.

3.1 The OSO-2B and 0S0-5 Satellites

The experiments on the OSO-2B and OS0-5 satellites were

designed by Prof. E. P. Ney and his group to study dim light

phenomena referred to as zodiacal light (44) and (45). OSO-2B

was launched in 1964 and 050-5 was launched in 1969.

Analyzing the experimental OSO-2B zodiacal light data,

Ney and associates identified light signals that had char-

acteristics of lightning discharges. To explore further the

efficacy of his optical system to detect lightning, Ney and

associates designed specific photometers which were added to

the zodiacal instruments used in 050-5.

The subsequent description and discussion of OSO-2B and

0SO-5 will be limited to their application to the detection

of lightning discharges.

; The detection concepts used on OSO-2B and 0SO-5 were

similar. They consist of optical systems that periodically

l
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scanned the earth. ?he optical radiation emitted from the

earth and the earth's atmosphere was intercepted by a number

of telescopes. _he optical energy was measured by photo-

meters whlch had an overall spectral response e_tending from

@

approximately 2900 A to 7000 _.

During the nighttime viewing, the photometers detected

the light emitted by lightning. The identification of

lightning was determined by observing the exponential decay

of the signal and also by observing that the lightning was

usually associated with large cloud systems which could be

seen in the reflected light of the airglow. A computer was

used to scan the data from the three photometers in order

to separate out all abrupt increases in signals, and to dis-

criminate against the abrupt increases due to spurious light

sources.

A description of the specifics of the optical systems

is given in the subsequent paragraphs.

The OSO-2B satellite was launched into a near circular

orbit at an altitude of 600 km. It had an inclination of 33 °

to the earth's equator and a period of 96 minutes. It con-

sisted of two components, a sail that was held perpendicular

to the sun satellite direction and a wheel that rotated 30 RPM

about an axis in the plane of the sail. (A _iagram depicting

the placement of all the components is shown in Fig. 19. )

During the day the spin axis was rigidly maintained at _ 4°
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Fig. 19

Configuration of the Satellites OSO-B2, OSO-5

Source: J. G. Sparrow et al
References (38)

of the plane perpendicular to the satellite sun line. At

night the sail was free to rotate with the wheel.

During the night, the sail and antisail telescopes

viewed the earth• Telescopes 0 and 3 (Fig. 19) were turned

off during the day and turned on during the night. During

the nighttime viewing, lightning discharges were observed.

Fhe photometers viewed through fixed Polaroid shee_s

whose orientation with respect to the sky was governed by

the rotation of the wheel. The spectral response of the

various photometers is shown in Fig. 20.
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Three of the photometers were pointed downward toward

the earth. One photometer was pointed upward along the spin

axis and one was used for calibration. The photometers

operated successfully from February to November, 1965, for a

total of 4120 - 15 = 4105 orbits.

The instrumentation used on 0SO-5 was an improved version

of that used on OSO-2B. The optics and electronics associated

with a number of the photometers were designed to detect more

efficiently optical pulses produced by lightning discharges.

Four of the photometers were capable of detecting lightning

strokes. ?wo of the photometers were pointed in the anti-sail

direction through the bottom of the spacecraft. One had a

4000 _ filter and a Polaroid filter, whereas the other had a

Coming (type 2-63) 5900 X filter. They measured the radiation

from the lightning flashes extending from the blue to the far

red.

"i
k'
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As the spacecraft rotated, the instrument covered a 30 °

cone above and below the spacecraft along the spin _xis.

The calibration of the photometers was accomplished by

having a known constant light source in the optical system of

the photometers.

Each photometer had a l0 ° angular diameter field of view,

looking along the spin axis of the satellite in the direction

opposite to that of the solar sail. The field of view of

the photometers c:: the earth ranges from approximately

1° x 1° when the photometers view vertically to a m_imum of

12 square degrees dust before the field of view leaves the

earth.

0SO-2B detected about 200 storms (400 strokes). Vorpahl

et al (44) computed that the number of storms during the night

is of the order of 3200 which is considerably lower than

Brooks' figure of 44,000 per day [i).

Sparrow and Ney (45) plotted about i000 storm complexes

from 0S0-5 data. About 7,000 lightning strokes were observed

during the periods February - September, 1969, (20 to 24 h.

local time), and January - July, 1970, (00 to 04 h. local

time). The results are similar to those acquired on OS0-2b

and similar to those reported by Edgar et al (46).

The number of lightning strokes per 2 minute interval

recorded in each storm complex varied from a minimum of 2 to

about 30.

The photometeus recorded spurious light signals that were

not associated with lightning. The sources of some of these
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spurious signals have been determined, whereas some sources

are still unknown. Sparrow and Ney (39) concluded that

sources of these spurious signals were other satellites that

passed in the photometer's i0 ° view, cities, and burning

gases of oil wells.

?he lightning measurements made by OSO-2B and 0SO-5

prove that the optical systems used can detect some llghtning

strokes and _der certain conditions of visibility of the

earth can associate these strokes with storm centers. The

system cannot, however, define the exact area at which the

lightning stroke occurs. The system does not possess the

needed spatial resolution.

The authors (44), (45) have attempted to correlate the

detection efficiency of their instruments with the data

acquired by other observers, using different detection tech-

niques. The correlation, by the authors' own admission, was

poor. On the other hand, their global distribution of thunder-

storm data agreed with other observed global data.

The results of OSO-2B and 0SO-5 indicate that optical

detection and noise-discrimination techniques can be used to

monitor global thunderstorms during nighttime viewing of the

earth's atmosphere. The attainment of more precise data on

the number and geographical location of thunderstorms - viewed i

only at nighttimes - requires additional sophistication of

the instruments.
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3.2 Defense Meteorological Satellite Proqram IDMSP)

The s_nsors on board DMSP were designed to provide

responsive meteorological data to the United States Air

Weather Service. Specifically, the missions for DMSP (47)

were to :

i. "Provide globally recorded visual and infrared

clou4 cover and other specialized environmental

data,"

_. "Provide real time direct readout of local area

environmental data", and

3. "Continue the advancement of environmental

satelli_e technology."

The global DMSP data were and are being processed by the

United States Air Force Global Weather Service. They are in

archives at the University of Wisconsin and are available to

all users at the National Oceanic and Atmospheric Admini- I

stration (NOAA).

Many DMSP satellites were launched into orbits. This

report will restrict its discussions to the DMSP satellites

shown in Table 1. These particular satellites, namely DMSP-33,

DMSP-2, and DMSP-3, provided extensive data on the global

thunderstorm activity, and their instruments and data were

discussed in the scientific journals.

The detection and the geographical spatial location
2'

techniques of terrestrial lightning flashes consist_ of twoi

scanning optical radiometers which responded to the spectral

radiation within the band from 4000 - 12,000 _. During each

2.
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scan the radiometers viewed a fixed area on earth. The input

radiant energy to the o_tical system of the radiometers was

converted into electrical signals and also into photographic

images. The rate of the rise and decay times of the electrical

signal were used to discriminate the lightnlng pulse from the

d.c. electrical pulses and other noise signals. On the photo-

graphic images, the lightning flashes appear as short streaLs.

The geographical area from whence the flashes originated can

be determined from the photographic image. The exact space

coordinates of the orbiting satellite and size of geographical

area that is viewed b_i the optical telescopes of the radiometer

can be determined. Neither radiometer will offer precise

locations.

The DMSP scanning radiometer optical components are shown

in Fig. 21 (47). One radiometer consists of a two-

channel scanner for high resolution (HR) and mode infrared

(MI) data_ the other scanner is a two-channel for very high

resolution (VHR) data. Each radiometer consists of a mirror

mounted on a shaft which rotates as the mirrors scan from the

horizon to the horizon. The VHR/WHR revolves at 5.34 c/s,

whereas the MR/M/ revolves at 1.78 c/s. The field of view

from VHR/WHR is 0.766 milliradians. The spatial zesolution

from an altitude of 833 _m is, at the sub point, 0.61 km.

The MR/M/ field of view is 4.56 milliradians and the resolution

at the sub _oint is 3.7 Mm. The MI detector has a 5.3 milli-

radian field of view and yields a resolution of 4.44 Mm for

infrar ._4 data.

i

i
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A Special Sensol- Lightning (SSL) detector, built by

Aerospace Corp., was launched into an 833 km altitude orbit

as a subsidiary payload on DMSP-33 (48). This s__nsor con-

sisted of 12 silicon photodiodes, arranged so that each photo-

diode sensor viewed about 500,000 km 2 of the earth while the

composite of all the sensors observed a complete field of

about 7 x 106 km 2 below the satellite. The area scanned is

shown in Fig. 22a (41), The sensitivity range of the

photodiodes was 10 8 to 2 x i0 I0 watts. The minimum detectable

signal was 1.5 x 10 -9 watts/cm 2 and the saturation level was

2 x 10 -7 watts/cm 2. Reflected sunlight saturated the sensor.

Fhe measurements were restricted to midnight times. Con-

sequently, only a small amount of data was processed from this

flight (49) .

A more sensitive lightning detection system was designed

and built by Sandia. It was labeled PBE-2 (Piggy Back Experi-

_._nt) and was installed on DMSP-2 satellite. The instrvmen-

ration consisted of a single photodiode, amplifier, and

digitizer channel. The field of view of this photodiode was

a cone of 40 ° half angle pointed directly d<,wnward toward the

earth. It covered an area of 10 6 km 2. Fig. 22b (_i)

shows the single element view of the PBE-2. The detectio_

sensitivity of PBE-2 was 4 x 10 9 to 1013 watts.

The primary purpose of PBE-2 was to extend the obser- _

ration of lightning to daylight as well as darkness. To

provide detection capability d:_ring daylight, sensor data _'

electronic processing was developed to reduce the value of

m_
p
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the d.c. component produced by the earth albedo. The elec-

tronic control was such that whenever the amplitude of the

lightning signals exceeded a value of 5 x 10 -8 watts/cm 2

digital sample began. Fhe sampling rate %_s 31.2 KHz, giving

a resolution of 32 microseconds.

False triggers, produced when the background illumi-

nation changes suddenly, are easily recognized and, therefore,

eliminated from the data base.

In the DMSP-3 satellites, the lightning detection instru-

mentation was an improved version of PBE-2. This satellite

was launched in April, 1980. To date, there is no infermation

on the operational data in the open literature.

The DMSP satellites we;e launched into circular sun-

synchrunous orbits at an altitude of 833 km, with an incli-

nation angle to the equatorial plane of 98.7 ° . The incli-

nation angle of 98.7 ° was selected to insure that the 833 km

circular orbit is sun-synchronous; that is, the orbital plane

of the DMSP satellite rotates slowly around the earth at the

same rate and direction that the earth rotates around the

sun (47).

The 98.7 ° inclination specifies the sub-point latitude

limits for the spacecraft. The spacecraft sub-point reaches

81.3 ° N and 81.3 ° S latitudes during each orbit. The sensor

scans 13.3 ° of latitude each side of the sub-trackj therefore,

at each 81.3 ° N or S, the imagery extends past the poles.

The nodal period of this sun-synchronous orbit is

i01.56 minutes.
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Fhe nodal period of 101.56 minutes indicates that the

satellite will orbit 14 times per day. Furthermore, each nodal

crossing will be 25.4 ° west of the previous crossing. Since

the scanning covers 13.3 degrees [latitude and longitude)

about sub-nodal point, the imagery data ar,_ contiguous about _
i

the equator. I

It was mentioned that experimental data acquired by the

DMSP series of satellites were in the form of photographic

images as well as amplitude voltages of the received signals.

Analyzing the photographic images of the D_P satellites,

Sizoo and Whalen (42) have identified the horizontal streaks

in the photographs as caused by lightning. These are shown

in Figs. 23 and 24 (50). In Fig. 23 the lightning flashes

appear as short bursts of white lines. This infrared photo-

graph was taken during the night without any moonlight. The

radiometers on board the DMSP detected the lightning but the

geographical location could not be determined because the

surface of the earth was not visible. In Fig. 24 is a night

visual photograph of lightning associated with an intense i

cold front. In this case, a full moon illuminated the surface. I
I

Fhe lightning flashes appear as white streaks all along the i

front extending along the Ohio Valley. The sensor scans i

from left to right, i

It is clear from these photographs that regional spatial

ground location of lightning by these instruments is only

possible if the night is illuminated fully by moonlight.
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Orville and Vonnegut (43) analyzing these same images

-5
of Fig. 23 deduced a flash frequency of 2.4 x 10

flashes/sec, km 2. For the storm depicted Dy image shown in

Fig. 24, the flash frequency was 1.5 x l0 -4 flashes/sec, km 2.

They offered the suggestion that flash frequency of lightning

could be indicative of the characteristics of different types

of storms.

Orville (51) has, also, analyzed the DhSP photographs

collected during September, October, and November, 1977.

Figs. 25a, b, c are plots of global occurrence of lightning.

Each plot shows the location of approximately 2000 flashes

with respect to the major land areas. As to be expected, the

concentration of storms centers around 25 ° N to 25 ° S lati-

tudes. The maps reveal the paucity of storms over the water.

From these data the land-ocean lightning flash frequency was

computed as a function of month. These data are shown in

Table IL.

17

Ratio of Land-Ocean Flash Frequenc y

Month

Flashes Land-Oc ean

Month Recorded Ratio

September 1813 i. 58

October 2121 i. 53

November 2178 i. 95

The land-ocean ratios reported differ by a value of l0 from

thc-e that were reported by vcrphal (44), and by a value of 8

that were reported by Orville and Spencer (52). Orville stated
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that the large discrepancy of i0 was due to the classifi-

cation of ocean flashes that occurred within 300 - 400 km

from the coast as land flashes. Reducing the extent of

classification to 50 km from the coast reduces the error

to 4.

Croft (53) has noted that over the south Atlantic

unusual lightning streaks were recorded in DMSP photographs.

He concluded that these were due to the satellite pene-

trating through the Van Allen Belt. The streaks thus gener-

ated were much longer than those due to thunderstorm lightning.

The radiometric data acquired by the DMSP-33 satellite

with the SSL (Special Sensor Lightning) sensor and by DMSP

flight 2 with the PBE-2 lightning sensor have been analyzed

and reported primarily by Turman (40) and (49), by Edgar

et al (46), and by Turman and Edgar (54), (55).

?he DMSP-SSL used the scanning scheme shown in Fig. 22a

to accumulate its data. Each point on the earth's surface

within 1500 km of the satellite subtrack was viewed consec-

utively by the three photodiodes for a total period in excess

of 5 minutes. The nominal range for the central photodiodes

was 920 km and for those on the edge, it was 1600 km.

The data were acquired for 15 orbits during the period

from September, 1974, to March, 1975. Thunderstorms were

observed during ten of the orbits and approximately 10,000

were recorded from 24 storm complexes. Notwithstanding, a

limited amount of data was processed.
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From these data T_rman (49) derived a cumulative fre-

quency distribution of power using a tohal of 4652 lightning

flashes. He found that the source median power level was

9
1 x l0 watts and that 98% of the flashes had pea_ power less ,i

than 1 x l0 I0 watts. The peak power varied from i0 to

8
2000 x i0 watts. The distribution is shown in Table 12.

[

TABLE 12 I
I

Frequency Distribution of Peak Optical !

Power from SSL Data ISource" Furman r Ref. 49) !
[

Power Range Normalized Cumulative

i08W Number Frac tion F rac tion

i - 2 387 0.083 0.083 ,

2 5 932 0 200 0 283 i

5 - i0 895 0.193 0.475 i

i0 - 20 935 0.210 0.676 [
i

20 - 50 1106 0. 228 0. 914

50 - 100 318 0.068 0.982 i
k

i00 - 200 66 0.014 0.996 I

200 13 0.003 1.00 [
|

Turman (49) derived from these SSL data the average flash

rate per un.!t surface area as 5 x 10 -6 to 2 x 10 -4 s-1 km -2.

The surface area considered is that area which is under the

view of the sensor. He concluded that the count rate corre-

lated well with the occurrence of cumulo-nimbus and related

cloud formation.

The DMSP flights 2 and 3 have recerded approximately

30,000 lightning triggers. Not all of these data have been

analyzed. Analyzing some of the accumulated data, Turm_un and

Edgar (54) report that 90% of the PBE pulses had rise times

ORIGINAL PAGE IS
OF POOR QUALITY
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of = 0.2 milliseconds and 80% had pulse duration of = 0.7

milliseconds. A representative sample of the rise and decays

as well as the wave shapes of the pulse are shown in Fig. 26.

80 to 90% of the observed lightning flashes had the wave

forms shown in Fig. 25a. About i0 to 20% had a wave form |

shown in Figs. 26b and 26c.

Turman (40) computed the lightning count rate for each

geographical region. The computation was performed by count-

ing the number of lightning strokes detected while the sat-

ellite sub-point was wit_hin that region and by dividing by

the total time the sub-point was within that region. In

Table i_ Turman (40) summarized the total lightning counts

and the integrated count rate for August - November, 1977.

TABLE 13

Total Counts

and Integrated Count Rate of Liqhtninq

Period Dawn Dusk

1977 Total Per Minute Total Per _4inute

Aug. - Sept. 2_60 0.2 3013 0.3

Sept. - Oct. 3871 0.3 2700 0.2 _
!

Nov. 2605 0.2 1269 0.1

The optical detection threshold of the DMSP-2 and -3 was

9
5 x 10 watts; hence, only a very small fraction of the global

thunderstorm activity was recorded. Comparing the results

achieved in the DMSP-PBE experiment with those reported by

others in the literature, Turman and Edgar (54) (55) concluded

that the DMSP-PBE detected only 2_ of all the lightning

flashes within its fiel_ of view.
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In summary, the meticulous analysis of the lightning

streaks on the DMSP infrared photographic images does yield

information on thunderstorm activity over extensive geo-

graphical regions. The geographical regions were deternined

only when there was sufficient moonlight illumination to make

the earth's surface visible. This scheme, if applied to the

analysis of all the infrared images recorded by the DMSP sat-

ellites, will yield, on sound statistical basis, a more

accurate global distribution of thunderstorm activity than is

available today. It will also provide a more accurate count

of the number of lightning flashes.

The derived global distribution of thunderstorm activities

is in agreement, in a general way, with other distribution

recorded by other investigations.

The detection threshold of the optical system was too

high. Its value was approximately l09 watts. As a consequence,

many of the lightning flashe_ -are not detected by this series

of satellites. DMSP did, however, record 30,000 lightning

flashes. __ven so, the system detected only 2% of all the

lightning flashes that occurred within the view of its optical
!

telescope. This fact represents a very low detection I

Lefficiency.

IV Summary of Source Characteristics and Satellite Results

!. General Remarks

A review of the literature reveale_ that the satellites

listed in Table 1 detected and measured electrical and optical

signals produced by terrestrial thu_derstorms.
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Lofti-i detected and measured the VLF (18KHz) signals

when the satellite was overhead the thunderstorm. Alouette

and Ariel II and RAE-I recorded lightning pulse in the fre-

quency band of 0.4 to Ii.5 _z. OSO-2B and Veia-B recorded

optical signals, the sources of which were id_r_tified to be

terrestrial lightning.

Ariel III, OSO-5, DMSP, and ISS-b satellites detected

and measured the n_gnitude of a number of parameters related

to lightning. The parameters that these satellites measured

or attu:_,_ed to measure were the electrical and optical energy,

the time histories and the wave forms of the energy pulses,

the number of pulses per unit time, and the determinatlon of

the geographical sources of the pulses. To evaluate the

effectiveness of the systems used in these satellites, it is

necessary to _now the characteristics and the magnitudes of

these parameters at the source, that is, the thunderstorm

complex.

2. Source Characteristics

Shown in Table g are the experimentally determined values

of the source parameters that are relevant to the design of

satellite systems in order to monitor thunderstorms. These

parameters were determined by measurements made on _he surface

of t_e earth. It is evident that the peak power o_ lightning

flash varies from 107 to 1012 watts. Krider (21) measured the

electrical and optical peak power of a lightr.ing flash to be

1.4 x 1012 and i.i x 1010 wauts, respectively. Turman (22)

found the radiated opuical power to vary from 2 x 10 9 to

2 x i0 II watts. Using optical experimental data acquired

20 _m above aund 20 Km distant from a thundercloud, Broom

"19820"19048-08"1
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et al (23) calculated the peak power of lightning flash;s and

found the power to vary in value from 108 to l0 l0 watts.

The electrical field as measur_ at a distance of i0 _rn

from the source is found to vary from a value of 106 YV/m at

.01 MHz to 102 _V/m at i00 MHz. These values represent the

computed average values of the experimental data acquired by

many investigators.

Barasch (24) made a number of ground measurements of

power of specific spectral lines radiated from _ single stroke.

The relative intensities of the spectral lines, as seen in

o o
Table 8, varied from i at 3914 A to 4.8 at 8220 A. The most

L

Oprobable value of 3914 A line _s about 4 x 104 Wsr -I A-I

Brook (14) found that the average value of the ratio of the

irradiance of the 6563 A to 3914 _ for all lightning pulses

to be 5.6.

The average rise time of an optical pulse, produced by

a return stroke, is approximately i00 _s and the decay time

is about 300 to 1000 _w s. The time histories of the various

optical pulses are governed by the type of lightning dis-

charge occurring in the thundercloud.

3. Satellite Results

}
Lofti-1

l
The Lofti-i experiments proved that the 18 KHz signal l

does penetrate the ionosphere, _nd, therefore, is detectable

and measurable within and above the ionosphere. During a dawn

|
_ss at a height of 400 km over Central America and during

the daylight part of the pass. several noise peaks due to
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lightning had values between i0 J4 v/m and i00 p V/re. The

prcpagation losses through the ionosphere during daylight

hours were computed to De approximately 38 _B and 13 dB during

night hours.

Alouette

r.f. tuned receivers covering the band (0.4 co ].1.5 .MHz)

det :ted r.t. pulses produced by terrestrial lightning.

Ariel III

The Ariel III detected and located terrestrial lightning

flashes. It used two narrow band receivers, one t_xe_ to l0 MHz

ar ] the other tune_ to 15 Y/_z. The max/mum recorded field

strength was 1.6 x 10 -3 V/m. The area of the ground viewe_

by Ariel III at the time was 8.3 x l0 5 km 2.

ISS-b

Tun_.d r.f. (5 - 25 M/_z) circuits were used to detect

lightning pulse, and also to discriminate against extraneous

noise si_,_ s. The ionospheric "IRIS" effect was used to

locate _ c,.- .,ical source of lightning. The ISS-b accumulated

reams of data on lightning discharges.

KotaMi et al (34} calculated the lightning frequency per

unit area to be 1.2 x 10 -5 sec -I Mm -2, the global frequency

of lightning discharge to be 63 sec -I, and the peak power

flux of a llghtning pulse to be 1.4 x l0 -13 wm -2 (KHz) -1.

During part of one orbit the IS._-b lightning data were

compared with the numb%r of thunderstorms recorded by the

Geostationary Meterological Satellite. The correlation

between these two sets of data was poor. Thirty to fifty per-

cent of the data had been affected by the high level of noisa

o
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signals. Global maps of thunderstorm activity were derived

from the data.

The area viewed by the satellite was .8 x 10 -6 km 2.

Vela-B

The lightning flash signals were detected by tuned r.f.

%

circuits. The d_ta indicate that lightning flashes were

poorly identified, and the location of the sources could not

be accurately determined. The correlation of Vela-B data with

meteorological ground data and with the occurrence and

location of thundery regions was extremely poor.

RAE-I

The c.nncept of detecting and determining the source of

lightning flashes was similar to one used by Ariel III. It

n_easured noise signals, including lightning pulse, aL an

altitude of approximately 6000 kin. The analysis of the data

provided co. :our maps of global terrestrial _'-adio noise

dis +ribt'-ic. It did not provide quality nor quantity

data on the number or the location of terrestrial lightning.

m

0SO-2B and 0S0-5

OSO-2B and 0S0-5 used similar optical detection systems

that periodically scanned the earth. The optical radiation

(2900 - 7000 _) emitted from hhe earth _d from the earth's

atmosphere was intercepted by a n'Imber of photometers. The

_' photometers detected lightning only during nighttime. The :

-_ lightning was identified as rapid increases an the value of

. !

_ signal intensity, followed by its exponential decrease tobackground values.
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OSO-2B detected about 400 lightning strokes and OSO-5

detected about 700u strokes. From these data seasonal maps

of thunderstorm act!vlty were derived.

The number of lightning strokes per two minute intervals

recorded in each thunderstorm complex varied from a minimum

of 2 to a_out 30.

The system lacked the capability to define the exact

area at which lightning strokes occur.

DNS P

On the DMSP satellites, the detection and the geograph-

ical spatial location tec,hniques of terrestrial lightning

flashes consisted of two scanning optical radiometers which

responded to the spectral radiation within the band 4000 -

12,000 A. During each scan the radiometers viewed a fixed

area on the earth. The input radiant energy to the optical

system of the radiometers was converted into electrical signals

and also into photographic images. The rate of the rise and

decay times of the electrical and optical signals was used to

discriminate the lightning pulse from the d.c. electrical

pulses and other noise signals.

. e D_P-SSL optical system consisted of 12 silicon

photodiodes arranged so that each photodiode viewed about

500,000 km 2 of the earth w.hile the composite of all sensors

observed a complete field of 7 x l06 _m 2 below the satellite.

The sensitivity range in units of input power to the lightning

channel of the diodes was 108 - i0 l0 "_tts.
>

The DMSP-PBE-2 consisted of a single photodiode. Its

i
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field of view covered an area of 10 6 k_T,2. Its detection il

sensitivity ranged from 5 x 109 to 10 ±3 _'atts.

Orvllle and Vonnegut (43) analyzing the photographic

images deduced flash frequencies of 1.5 x 10 -4 to

2.4 x 10 -5 flashes/s_c, km 2. Orville (51) found the ratio of

land to ocean fl-sh frequency to be 1.68. Global contour

maps of lightninc detected at midnight were prepared.

?urman (40) derived accumulative frequency distribution

of power of lightning flashes. The peak power varied from

10 9 to 2 x l0 ll watts; the median was 10 9 watts. 98% of the

flashes had peak power less than 1 x l0 l0 watts. The flash

rate on the surface varied from 5 x 10 -6 to 2 x 10 -4 sec -I k_m-2.

The DMSP-PBE-2 and -3 satellites recorded approximately
t

30,000 lightning strokes. Not all of these have been analyzed.

Comparing the results achieved by the DMSP-PBE satellite with

other ground meteorological data, Turman and Edgar (54) found

that DMSP-PBE detected only about 2% of all the lightning

flashes within its field of view. From the DMSP-PBE-2 data

wave shapes of the optical pulses were derived. 90% of the

pulses had rise times of 0.2 milliseconds and 80% had pulse

duration of 0.7 milliseconds.

_he operational specifications of those satellites that

were instrum__nted to study the characteristics of lightning

are shown in Table 14. In the first column, the satellites

_re listed in order of their achievements. The total field

of view of the detection system is given. The geographical

spatial resolution is given in colua_ three.

c

D_
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The sensitivity of the system is expressed in t:_-odif-

ferent units, one as the value of the input signal, and, the

other as power radiated by the lightning stroke at the source.

A range of values is given. It is to be noted that units

differ for each satellite. These were the units expressed

by the authors of the various papers that were reviewed.

4. Ratin_ of Satellites

The performance and rating of each satellite are pre-

sented and assessed in Table 15 in terms of topics related to

global thunderstorm activities es defined in Table 2. The

judgement expressed as "yes" ar.d "no" in Table 15 was predi-

catted on the answer to two quesCions. First, does the satel-

lite satisfy, partially or wholly, the requirements set forth

in Table 2? Second, can explicit information be derived from

the expcrimental data to satisfy those requirements?

The DM_P-SSL and DMSP-PBE, from a technical point of

view, used a system that provided photometric data and photo-

graphic images of lightning flashes. These satellites pro-

vided the most precise data on the thunderstorms even though

their data gathering efficiency was low.

The ISS-b and the Ariel III satellites were moderately

effective in detecting powerful lightning flashes. They

failed to detect and record the less powerful flashes because

they were submerged in the noise. The r.f. technique used to

discriminate against the undesired noise signals was too

effective. Furthermore, the geographical spatial resolution

of these satellites was poor.

i
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The optical detection system of the 050-5 was very

sensitive. However, it could only operate during the night.

its geographical spatial resolution ",'as also poor.

Unlike the DMSP, ISS-'), and 0S0-5, the other satellites

listed in Table 15 were not specifically instrumented to

detect lightning flashes. They were more concerned with

t.hell" particular scientific and engineering missions. The

detection of lightng flashes was incidental.

V Discussian and Recommendations

_he experimental data and results acquired by the

orbiting satellites that were discussed in this review indi-

cate that the scientific and technical objectives, such as

precise information _n the intensity, the number, and the

location of lightning flashes as well as the adequate knowl-

edge on the characteristics of lightning phenomenon, cannot

be attained. The instruments used in these satellites did not

have the sensitivity to detect the lightning pulse whose

8
source had power values less than i0 watts, did not have the

spatial resolution to define the geographical sources of i

lightning to an accuracy of 25 km 2 i, and did not have the
I

capability to discriminate definitive'v the lightning pulse

from other noise signals. It is evident that improved techni-

ques and instruments are needed and must be developed and

applied.

The development of improved satellite detection systems

requires the availability of more precise data of the lightning
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parameters as measured above the thundercloud. The critical

data needed are:

i. Fhe absolute value of the electrical and optical

emissions from the first and subsequent lightning

strokes,

2. The frequency (10 KHz to 50 _d_z) spectrum of the

electrical emission,

O

3. The intensity of the spectral (3000 - 12,000 A)

emission lines,

4. The wave form and the time history of _he optical

pulses, and

5. The ratio of the number of electrical to the

number of optical pulses.

Item 1 will define the sensitivity required by the

satellite instruments to detect all of the lightning strokes.

Items 2, 3, and 4 will provide technical data that could be

valuable in developing discrimination concepts. Item 5 can

serve as a "yardstick" to evaluate the effectiveness of any

hybrid electrical-optical detection system used in the

satellite.

It is stronqly recommended that the proposed measure-

ments above the cloud be seriously considered, as well as the

simultaneous measurements below the cloud.

Vonnegut et al (56) and Christian (57) have plans to

measure some of these quantities above and below thunderstorms.

A perusal of the satellite data leads one to jump to the

hasty conclusion that a system of three or more appropziately

"i

d
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placed orbiting geos_chronous satellites could fulfill the

scientific and technical objectives that are defined in

Table 2. Coroniti (58) and _lassa and Coroniti (59) have pro- i

posed such a system. It is not obvious that a geosynchronous

satellite will, indeed, provide the needed information. At

i000 km altitude, the present instruments in the satellites

reviewed it, this report had sensitivities to detect the

8
equivalent of i0 watts of optical and electrical energy

radiated by lightning flash. The detection efficiency was

very poor. At geosvnchronous altitude of approximately

36 x 103 _m the intensity of all terrestrial signals will

decrease by an additional factor of approximately l03. The

I sensitivity of the detection instruments in the geosynchronous

satellites, therefore, must be increased by at least - if not

more than - a factor of i03 .

The same rationale can be applied to the geographical

spatial resolution problem.

The data banks of NASA and NOAA have many meteorological

photographs of the terrestrial atmosphere acquired by the

geostationary satellites. It is recommended that pertinent
i

data from these archives should be critically analyzed to

determine_

I. Whether lightning discharges have been detected, I
I

2. The intensity of the incident optical energy, _li3. ?he geographical spatial resolution of the partic-

ular optical system used, and
5
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4. The efficiency of detection by comparing the

satellite data with ground based data.

The result of the analysls should be conducive to a

definition of the detection sensitivity and the geographical

spatial resolution required to monitor regional and global

thunderstorm activity from a geosynchronous satellite.

Sophisticated electrical and optical systems are pres-

ently in use in geosynchronous satellites to measure, in

various forms, the electrical and optical energies emitted by

the earth and by the earth's atmosphere, it is recommended

_hat a study of these systems be initiated in order to deter-

mine their applicability - in their present or modified

versions - to the problem of monitoring severe thunderstorms.

Perusal of the scienLific papers and reports in this

review did not indicate conclusively whether the electrical

or the optical satellite system was m_re efficient in detect-

ing and locating lightning flashes. This uncertainty should

be resolved. It is recommended that a study to resolve this

question be initiated.

This study appears to indicate that the electrical system

is more sensitive in detecting the energy radiated by the

first and subsequent lightning strokes_ whereas, the optical

system is more effective in locating geographically the source

of lightning. I__tis recommended that a study be initiated to

study the feasibility of a hybrid electrical - optical

satellite system to monitor severe storms.

A
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?he location of precise positions of lightning discharges

by satellite appears to be a formidable task. Many ground-

Dased elL__trical systems to detect and locate lightning have

been developed and are currently in operation. A hybrid

system consisting of ground-based satellite equipments could

provide a viable system for monitorinc thunderstorm activity.

The ground system could provide accurate geographical coor-

dinate data on the source of lighting discharge as well as

data on the number of discharges. It could also provide a

precise "time-hack" slgnal. All of these data can be trans-

mittea to the satellite where they can be correlated and pro-

cessed in conjunction with the photographic satellite data.

It is recommended that the feasibility of a grou_d -

satellite hybrid system be studied.

_he Lofti-1 experiment proved that the enerc_'etic 18 KHz

signal produced by lightning does penetrate the ionosphere.

It measured signal strengths of l0 to 100j_V/m at 400 }un.

Modern communication receivers nave a sensitivity of 0 i _V/m

with signal to noise ratio of 60 dB or mcre. Incorporation

of these improved electronic circuits to VLF receivers assures

the detection of all the lightning flashes. In addition, the i_

I
VLF signal could be used as the basic "time" signal to inte- I

graue the satellite and the gound network data. :t i__._s

recommended that t

i. A search of the technical and scientific litera-

ture be initiated in order to find out if other
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investigators have measured these VLF sigr,a!s in

and above the ionosphere, and

2. Additional .,_ _ _ smeas..emen_s of VTF igna!s be made

above the ionosphere.

i

I
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